

Great River Hydro

John L. Ragonese FERC License Manager Great River Hydro, LLC 40 Pleasant Street, Suite 202 Portsmouth, NH 03801 tel 603.498.2851 em jragonese@greatriverhydro.com

August 18, 2019

<u>VIA ELECTRONIC FILING</u> Honorable Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, D.C. 20426

Re: Great River Hydro, LLC FERC Project Nos. P-1892-026, 1855-045, and 1904-073 May 20, 2019 ILP Study Report Addenda – Response to Comments, Disagreements and Requests to Amend Study Plans

Dear Secretary Bose:

Great River Hydro, LLC ("Great River Hydro" or "GRH") is the owner and licensee of the Wilder Hydroelectric Project (FERC No. 1892), the Bellows Falls Hydroelectric Project (FERC No. 1855), and the Vernon Hydroelectric Project (FERC No. 1904). On October 31, 2012, TransCanada (the previous licensee) initiated the Integrated Licensing Process ("ILP") by filing with the Federal Energy Regulatory Commission ("FERC" or "Commission") its Notice of Intent to seek new licenses for each project, along with a separate Pre-Application Document for each project. On May 9, 2019 the Commission issued a "Notice of Authorization for Continued Project Operation" for each of the three Projects. The Notices extend the conditions of the current licenses for one year or until the issuance of new licenses, whichever comes first; and, unless otherwise ordered by the Commission, automatically renew annual licenses should new licenses not be issued by April 30, 2020.

As required by 18 C.F.R. §5.15(f) and in accordance with the Revised Process Plan and Schedule issued February 19, 2019 by the Commission, Great River Hydro submitted Revised Final Study Report for ILP study 9 (Instream Flow) on May 20, 2019. As discussed in that filing, no changes were made to the Study 24 (Dwarf Wedgemussel) report filed on March 22, 2017 and therefore no filing was made for that study. However, a supplemental study report for ILP Study 18 (American Eel Upstream Passage Assessment) reporting on 2018 fieldwork was provided in the May 20, 2019 filing. A study report meeting was held on June 4, 2019 and a meeting summary was filed June 18, 2019. On July 18, 2019 the Vermont Agency of Natural Resources (VANR) and the Connecticut River Conservancy (CRC) filed comment letters addressing the May 20, 2019 filing. With this filing, and as per 18 C.F.R. §5.15(c)(5), Great River Hydro submits responses to comments and specifically to Disagreements and Requests to Amend Study Plans regarding the Study 9, Instream Flow Revised Final Study Report, and comments on the supplement report for Study 18. Our responses are indicated in the attached table entitled Response to Comments, Study Reports filed May 20, 2019.

As stated in the Revised Study Plan filed on August 14, 2013, the overall objective of the Instream Flow Study (Study 9) was to assess the relationship between stream flow and resultant habitat of key aquatic species in riverine reaches downstream of project dams. Specific objectives were to:

- compute a habitat index versus flow relationship for key aquatic species in each project reach; and
- use the habitat index versus flow relationship to develop a habitat duration time-series analysis over the range of current operational flows.

These objectives were met and study plan methods were followed. Several of the comments made did not address the study scope, study plan, or study report and did not specifically request additional studies; as those comments are outside the scope of this filing, Great River Hydro offers no response.

If there are any questions regarding the information provided in this filing, please contact John Ragonese at 603-498-2851 or by emailing<u>iragonese@greatriverhydro.com</u>.

Sincerely,

John Bymere

John L. Ragonese FERC License Manager

cc: Interested Parties List (distribution through email notification of availability and download from Great River Hydro's relicensing web site www.greatriverhydro-relicensing.com).

Attachments:

- (1) Response to May 20, 2019 USR Comments
- (2) Appendix A: Habitat Suitability Criteria, to ILP Study 9 Instream Flow Revised Final Study Report

Study 9 – In	stream Flow Assessment
--------------	------------------------

Comment #	Source	Comment	Response
1	VANR	Regarding Tables 6.3.1-1, 6.3.1-2, 6.3.1-5, and 6.3.1-6, what is meant by the highlighted rows (e.g., Walleye fry on page 167)? Request : Please revise the table caption to indicate what highlighted rows are meant to communicate, or if colored in error, revise the tables accordingly.	See pages 166 and 171 where the tables are introduced and discussed in the text. For tables 6.3.1-1 and 6.3.1-2, the text on page 166 states, "Examples highlighted in Tables 6.3.1-1 and 6.3.1-2 are Walleye adult, juvenile and fry, all of which have low velocity thresholds and are normally associated with pools, habitat that is rare under the CR analysis. For these life stages AWS values under the CR are appreciably lower and fluctuate erratically compared to total AWS." The text explains highlighted rows within the tables, no revisions are necessary.
2	VANR	Regarding Figure 6.3.2-6, the Agency recommends updating Appendix A to include the final updated Sea Lamprey spawning HSC in both graphical and tabular form to ensure they have a final, documented home. This will improve the likelihood that ongoing and future assessments of hydraulic-habitat conditions for Sea Lamprey at the projects are informed by common habitat suitability assumptions.	Appendix A has been updated as recommended and is included with this filing.
3	VANR, CRC	Section 6.3.3 'Time Series'. VANR: "Because essentially no information is provided on (a) the hydrologic and operational details of the 'strawman' scenario or (b) the sequencing and chronology of different habitat offerings (i.e., time series vs. duration curves), it is not clear what the habitat time series/habitat duration curve results mean relative to current operations/relicensing proposal. Additionally, the comment by GRH that 'Lacking any specific alternative proposals from the Aquatics Working Group' does not reflect the discussions had between the Aquatic Working Group and GRH during	 GRH participated in numerous consultation meetings where: 1.) It presented additional analyses as requested by AWG; 2.) Attended analytical presentations by members of the AWG; 3.) Provided data and recompiled data as requested by the AWG; 4.) Responded to a model scenario request designed to understand the hydrology associated with current inflows to the projects;

the consultation process (e.g., the August 7, 2018	5.) Presented an overview of the energy generation
consultation meeting, at which GRH indicated a	markets and where these projects play a critical
-	role.
willingness to advance a new operations proposal).	
	All with the intent of examining the results of Study 9
Request : Please clarify what the operational conditions	through the lens of a potential operational alternatives that
underlying the 'strawman' proposal analyzed in the	the AWG would be interested in examining through the use
report, including base and generation flows, ramping	of a time series analysis dependent on the Study 5
rates, impoundment levels, etc. (e.g., operations model	Operations Model.
inputs). Additionally, please clarify if this proposal is	
what GRH intends to advance as its formal relicensing	The goal of Study 9 in the final Study Plan states:
proposal.	"The overall objective of this study is to assess the
	relationship between stream flow and resultant habitat of
CRC: "Much of the conclusion relies on relating	key aquatic species in riverine reaches downstream of
information about a "strawman" scenario where no	project dams. Specific objectives of this study are to:
details were provided as to the parameters used. It is	 compute a habitat index versus flow relationship for
quite difficult to understand the effects of a change of	key aquatic species in each project reach; and
operational scenario without knowing what that	 use the habitat index versus flow relationship to
change was. Additionally, the conclusions when	develop a habitat duration time-series analysis over the
comparing the baseline to the strawman seem to	range of current operational flows."
cherry pick only those that would indicate that an	
increase in minimum flow (having no idea what	Under the Analysis Section of the Study Methodology, the
minimum flow was used) would be detrimental to or	Study Plan states: "Hydrology and flow scenarios to be
have no effect on available habitat. For instance, "an	assessed will be determined from results of the operations
increase in minimum flows during the summer results	model (Study 5) and with input from the working group."
in lower AWS for White Sucker and Smallmouth Bass	
fry,"5 but what about the other species under	GRH did not receive input from the AWG relative to a
consideration?"	proposed operating scenario to be examined. Therefore, in
	order to provide some information to the AWG about the
	sensitivity and habitat response to a potential change in
	operations, GRH ran a "strawman" operational scenario
	that was outlined, but not specified, to the AWG. The
	intent was to illustrate and observe how habitat might shift
	given the two outlined characteristics of the "strawman"
	scenario which GRH described to the AWG as: 1) a
	scenario which GRH described to the AWG as: 1) a

			significant increases above current year-round requirements in minimum flows that were seasonally adjusted over the course of a year as Spring, Summer and Fall-Winter flows, and 2) a substantial ramping rate that could not be exceeded, applied to both upward and downward adjustments in generation.
			Although GRH provided a full data set of the habitat changes to the AWG, GRH did not and will not provide the specific operational scenario to the AWG because that was not the intent of this exercise. It was not intended to quantify, only to illustrate general habitat sensitivity to operational changes such as increasing minimum flows and ramping rates in order to guide the AWG in development of potential operational scenarios.
4	VANR	Section 6.3.4 'Species and Life Stage Reduction', the Agency has independently explored opportunities to reduce the number of species/life stages represented in the data and agrees to the recommended groupings. However, it should be noted that these 'multi-species' curves should be appropriately weighted/considered in subsequent analyses that might otherwise view such results as representing 'one species.'	GRH recognizes VANR's concern regarding the grouping of species curves. At the point in time where an analysis indicates sensitivity among those species within a grouping such that weighting or single species differentiation is necessary, we will make that clear.
5	CRC	During the aquatic workgroup meetings over the last year stakeholders requested that Great River Hydro conduct an inflow equals outflow model run in order to evaluate the effect of that possible operational scenario on habitat. Great River Hydro executed that request but CRC notes that there was no habitat analysis conducted in coordination with that model run and no information from this model run was included in the study report, so the stakeholders and FERC cannot benefit from any information that might have been gleaned from that example.	CRC has mis-represented the discussion and rationale presented to GRH for requesting the inflow-equals-outflow model run and further, failed to mention GRH's presentation of the results of that model run. The AWG did request GRH to run an inflow-equals-outflow model run (aka steady-state model run). A significant portion of the October 5, 2017 consultation meetings was devoted to clarifying what was meant by this request. Inflow to the project at the head of the reservoir (?) vs inflow at the dam (?) was one such discussion point to be

clarified. Additionally, GRH expressed concerns that the
AWG did not fully comprehend that given significant river
miles associate with each reservoir, inflow at the dam
would potentially result in increases to the reservoir
elevation and range of fluctuation at points upstream of the
dam in comparison to current operations.
During these discussions it was never suggested by the
AWG that GRH perform and present a habitat time series
analysis nor was it ever GRH's intent to do such. GRH
stated repeatedly that an inflow-equals-outflow operating
scenario was nothing they would consider as a viable
operational alternative due to upstream reservoir
management impacts. The AWG specifically informed GRH
that the intent of the inflow vs. outflow model run was only
to help inform them of the available water or hydrology
that such a scenario might indicate as discharges from each
dam. GRH was willing to perform the model run, present
the results and provide the data set on that basis of
understanding alone. Hydrology and reservoir elevation
results from the steady-state operation model run were
presented at the June 8, 2018 meeting and discussed in
other Study 9 consultation meetings but was never
intended to be a part of the Study 9 alternatives analysis.
CRC's statement that "stakeholders requested that Great
River Hydro conduct an inflow equals outflow model run in
order to evaluate the effect of that possible operational
scenario on habitat" is inaccurate.
scenario on napitat is inaccurate.

Study 18 – American Eel Upstream Passage - Supplement

Comment	Source	Comment	Response
#			
1	VANR,	Both VANR and CRC suggest GRH investigate and	Currently, dedicated monitoring of the fishway is part of
	CRC	consider alternative means for counting eels. They	the VTFWD fishway monitoring program. The modifications

identify that SalmonSoft was not designed for eel	undertaken by GRH were intended to improve the
enumeration and the resulting data increasingly appear	capability and effectiveness of VTFWD's monitoring system
to be unreliable.	in hopes of better detection and directional identification
	of passing eels with the goal of improving the count
	accuracy of eels in the Vernon fish ladder. Results for the
	2019 migration season at Vernon, provided by VTFWD,
	show a positive upstream migration of eels in a year when
	the number of eels migrating up the river, as indicated by
	numbers passed at Holyoke and Turners Falls, was very low.
	The positive upstream count suggests the modifications
	made may be improving count accuracy and additional data
	points (i.e., additional monitoring with SalmonSoft)
	combined with results of the PIT tag study being conducted
	this year should be evaluated.

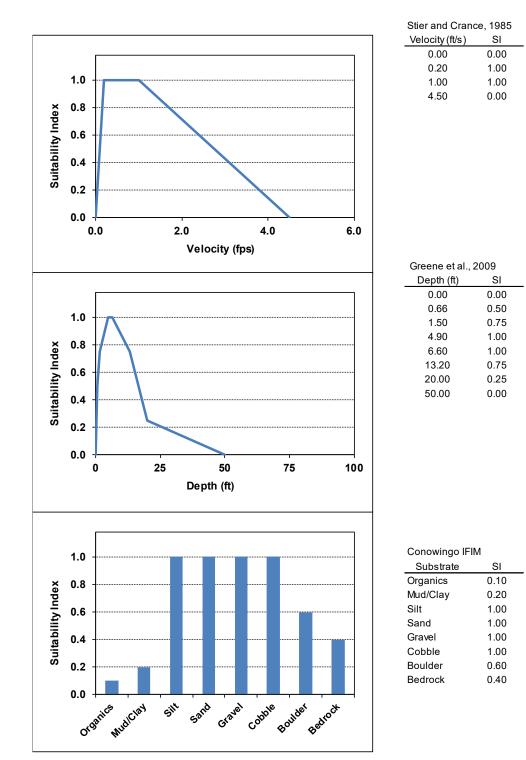
Appendix A

Habitat Suitability Criteria

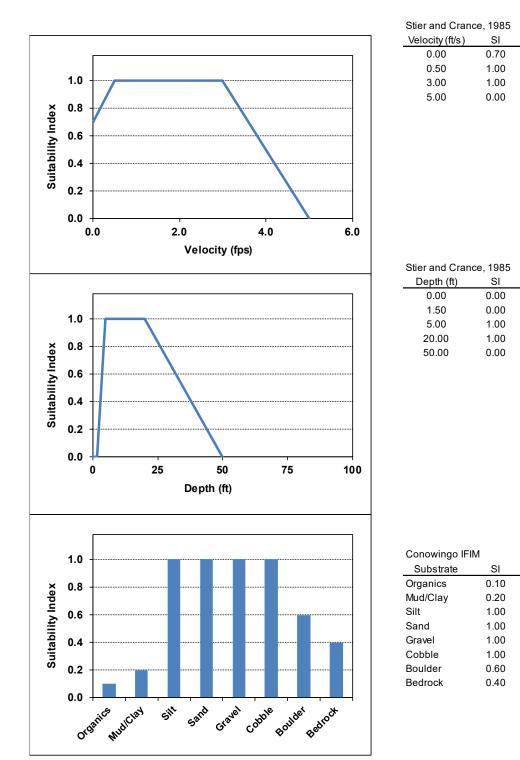
Updated August 2019

[This page intentionally left blank.]

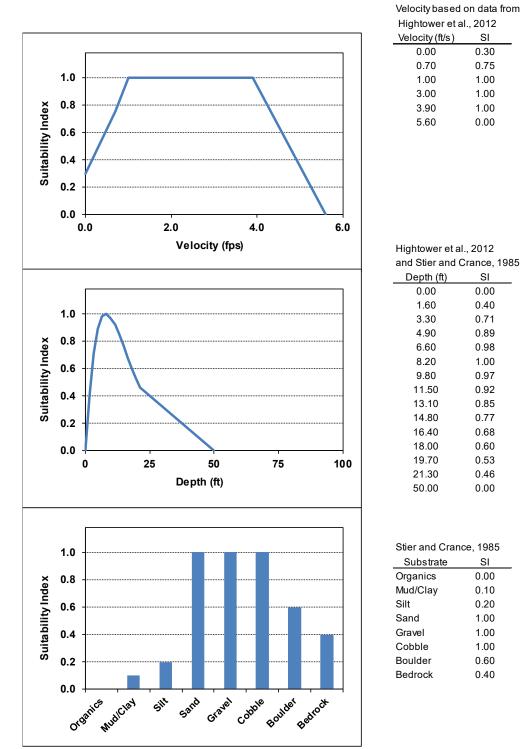
Species	Life Stage	Variable	Original Source	Identified Source	Note:
		Velocity	Stier and Crance, 1985	Stier and Crance, 1985	
	Juvenile	Depth	Stier and Crance, 1985	Excelon, 2012 (Conowingo IFIM)	Based on Greene et al. 2009
		Substrate	Stier and Crance, 1985	Stier and Crance, 1985	Not Stier and Crance 1985, source?
		Velocity	Stier and Crance, 1985	Stier and Crance, 1985	
American	Adult	Depth	Stier and Crance, 1985	Stier and Crance, 1985	
Shad		Substrate	Stier and Crance, 1985	Stier and Crance, 1985	Not Stier and Crance 1985, source?
		Velocity	Stier and Crance, 1985	Hightower et al., 2012	Modified based on review of data
	Spawning	Depth	Stier and Crance, 1985	Hightower et al., 2012	Used original Stier and Crance, 1985 endpoint of 50 feet.
		Substrate	Stier and Crance, 1985	Stier and Crance, 1985	
		Velocity	McMahon et al., 1984	McMahon et al., 1984	
	Fry	Depth	McMahon et al., 1984	McMahon et al., 1984	
	-	Substrate	McMahon et al., 1984	McMahon et al., 1984	
		Velocity	McMahon et al., 1984	McMahon et al., 1984	
	Juvenile	Depth	McMahon et al., 1984	McMahon et al., 1984	
		Substrate	McMahon et al., 1984	McMahon et al., 1984	
Walleye		Velocity	McMahon et al., 1984	McMahon et al., 1984	
-	Adult	Depth	McMahon et al., 1984	McMahon et al., 1984	
		Substrate	McMahon et al., 1984	McMahon et al., 1984	
	Spawning/	Velocity	McMahon et al., 1984	Bozek et al., 2011	Based on reanalysis of Bozek et al., 2011
	Incubation	Depth	McMahon et al., 1984	Bozek et al., 2011	From Turners Falls project
		Substrate	McMahon et al., 1984	McMahon et al., 1984	
		Velocity	NA	Gomez and Sullivan, 2007	
	Fry	Depth	NA	Gomez and Sullivan, 2007	Velocity and depth based on brook
		Substrate	NA	Gomez and Sullivan, 2007	trout fry and juvenile HSC curves
		Velocity	NA	Gomez and Sullivan, 2007	developed as part of a Delphi Process
	Juvenile	Depth	NA	Gomez and Sullivan, 2007	for the Deerfield River.
F - 116: - 1-		Substrate	NA	Gomez and Sullivan, 2007	
Fallfish		Velocity	None identified	Gomez and Sullivan, 2007	
	Adult	Depth	None identified	Gomez and Sullivan, 2007	
		Substrate	None identified	Gomez and Sullivan, 2007	Developed in consultation with the
		Velocity	None identified	Gomez and Sullivan, 2007	New York Department of Environmental Conservation
	Spawning/	Depth	None identified	Gomez and Sullivan, 2007	
	Incubation	Substrate	None identified	Gomez and Sullivan, 2007	1

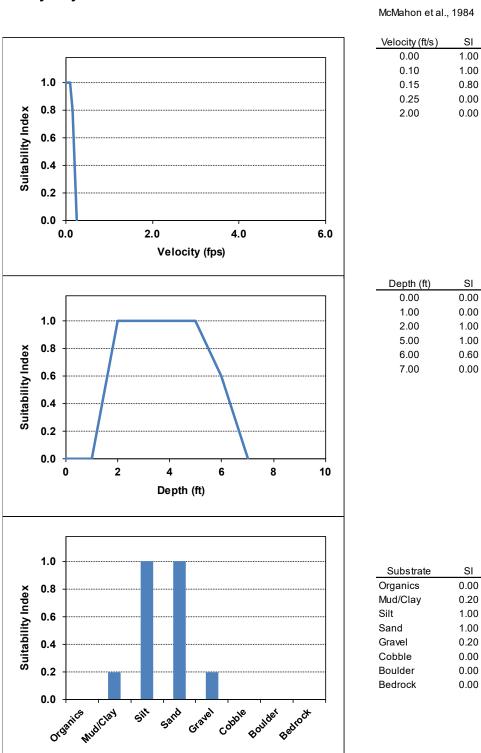

HSC sources and references for the Wilder, Bellows Falls and Vernon projects.

Species	Life Stage	Variable	Original Source	Identified Source	Note:	
		Velocity	USGS HSC Library	Gomez and Sullivan, 2007		
	Fry	Depth	USGS HSC Library	Gomez and Sullivan, 2007		
		Substrate	USGS HSC Library	Gomez and Sullivan, 2007		
Longnose		Velocity	USGS HSC Library	Gomez and Sullivan, 2000		
-	Juvenile	Depth	USGS HSC Library	Gomez and Sullivan, 2000		
dace		Substrate	USGS HSC Library	Gomez and Sullivan, 2000	Modified by Vermont Department of	
		Velocity	USGS HSC Library	Gomez and Sullivan, 2000	Fish and Wildlife	
	Adult	Depth	USGS HSC Library	Gomez and Sullivan, 2000		
		Substrate	USGS HSC Library	Gomez and Sullivan, 2007		
		Velocity	Twomey et al., 1984	Twomey et al., 1984		
	Fry	Depth	Twomey et al., 1984	Twomey et al., 1984		
		Substrate	Twomey et al., 1984	Twomey et al., 1984		
White		Velocity	Twomey et al., 1984	Twomey et al., 1984		
	Juvenile/Adult	Depth	Twomey et al., 1984	Twomey et al., 1984		
sucker		Substrate	Twomey et al., 1984	Twomey et al., 1984		
	Spawning/	Velocity	Twomey et al., 1984	Twomey et al., 1984		
	Incubation	Depth	Twomey et al., 1984	Twomey et al., 1984		
	Incubation	Substrate	Twomey et al., 1984	Gomez and Sullivan, 2007	Modified from original source	
Tessellated		Velocity	Warner et al. 2006	Warner et al. 2006 & Aadland	Modified by VTDFW-2015	
	Adult	Depth	Warner et al. 2006	and Kuitunen 2006	Modified by VIDEW-2015	
darter		Substrate	Aadland and Kuitunen 2006	Aadland and Kuitunen 2006	Jhonny darter as surrogate	
		Velocity	Kynard and Horgan, 2013	Kynard and Horgan, 2013	Modified by FWS based on Yergeau,	
Sea lamprey	Spawning	Depth	Kynard and Horgan, 2013	Kynard and Horgan, 2013	1983 (depth and substrate); Depth	
	5	Substrate	Kynard and Horgan, 2013	Kynard and Horgan, 2013	modified by NAI Feb. 2017	
	Fry	Velocity	NA	Leonard et al., 1986	HSC source for this project	
		Depth	NA	Leonard et al., 1986	HSC source for this project	
	,	Substrate	NA	Leonard et al., 1986	HSC source for this project	
		Velocity	NA	Groshens and Orth, 1994	HSC source for this project	
	Juvenile	Depth	NA	Leonard et al., 1986	HSC source for this project	
Smallmouth	Juvenne	Substrate	NA	Leonard et al., 1986	HSC source for this project	
		Velocity	NA	Groshens and Orth, 1994	HSC source for this project	
bass	Adult	Depth	NA	Leonard et al., 1986	HSC source for this project	
	Addit		NA	· · · · · · · · · · · · · · · · · · ·		
		Substrate		Leonard et al., 1986	HSC source for this project	
		Velocity	NA	Allen, 1996	HSC source for this project	
	Spawning	Depth	NA	Edwards et al., 1983	HSC source for this project	
		Substrate	NA	Allen, 1996	HSC source for this project	
Macro-		Velocity	Unknown	Gomez and Sullivan, 2000	VTDFW modified	
invetebrates	nymphs	Depth	Unknown	Gomez and Sullivan, 2000	NMPC curve	
Invetebrates		Substrate	Unknown	Gomez and Sullivan, 2000		

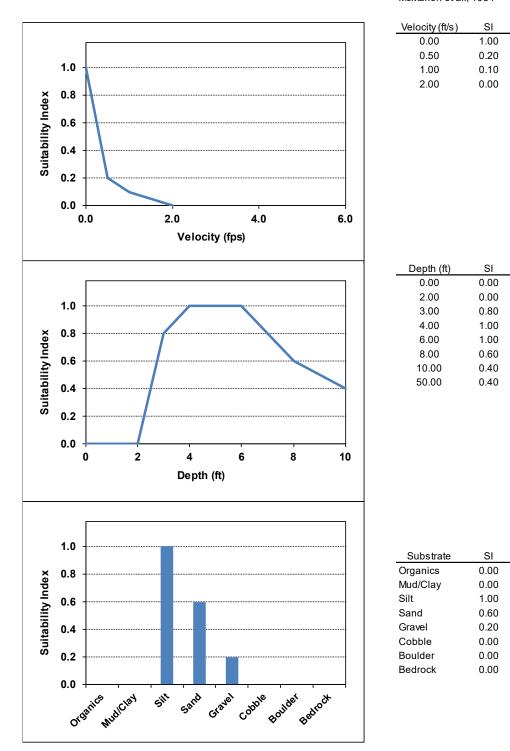

Species	Variable	Original Source	Identified Source	Note:
	Velocity	Normandeau &Biodrawverity 2016	Normandeau &Biodrawverity 2016	
	Depth	Normandeau &Biodrawverity 2016	Normandeau &Biodrawverity 2016	
	Substrate	Normandeau &Biodrawverity 2016	Normandeau & Biodrawverity 2016	
Dwarf Wedgemussel	Shear Velocity	Normandeau &Biodrawverity 2016	Normandeau & Biodrawverity 2016	Delphi process
	Bed Shear Stress	Normandeau &Biodrawverity 2016	Normandeau & Biodrawverity 2016	
	Relative Shear Stress	Normandeau &Biodrawverity 2016	Normandeau & Biodrawverity 2016	
	Benthic Velocity	Normandeau &Biodrawverity 2016	Normandeau &Biodrawverity 2016	
	Velocity	Normandeau & Biodrawverity 2017	Normandeau &Biodrawverity 2017	
	Depth	Normandeau &Biodrawverity 2017	Normandeau & Biodrawverity 2017	
Co-occurring	Substrate	Normandeau &Biodrawverity 2017	Normandeau &Biodrawverity 2017	
Mussels	Bed Shear Stress	Normandeau &Biodrawverity 2017	Normandeau &Biodrawverity 2017	
	Relative Shear Stress	Normandeau &Biodrawverity 2017	Normandeau &Biodrawverity 2017	
	Benthic Velocity	Normandeau &Biodrawverity 2017	Normandeau &Biodrawverity 2017	

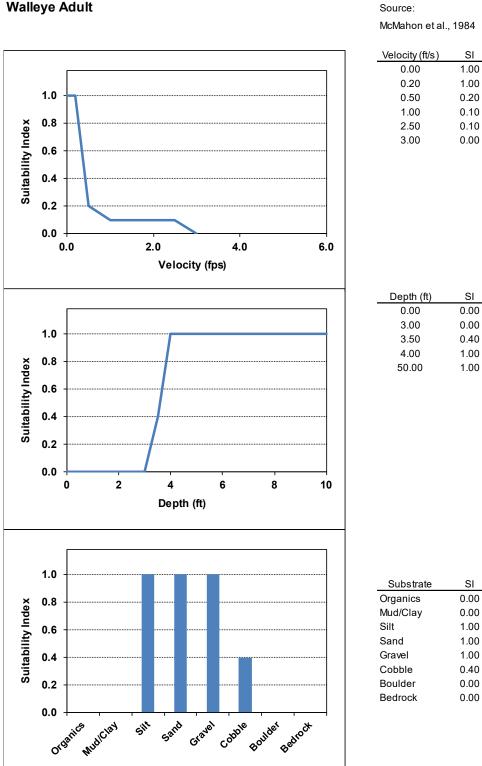

[This page intentionally left blank.]


American Shad Juvenile



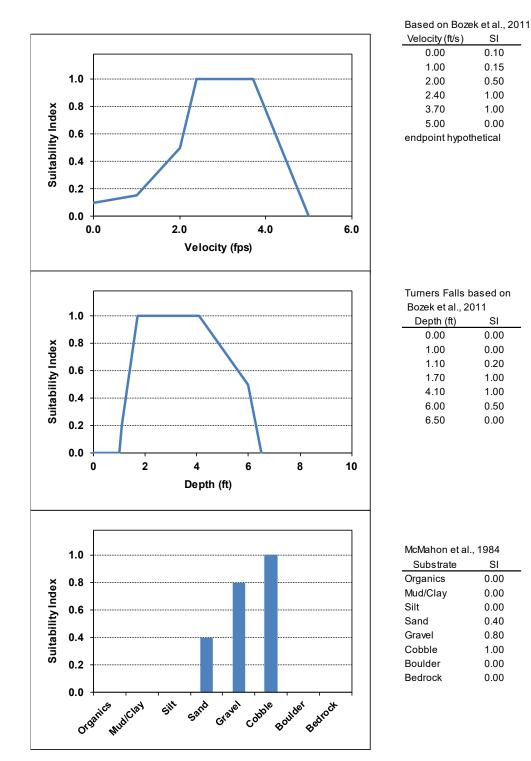
American Shad Adult

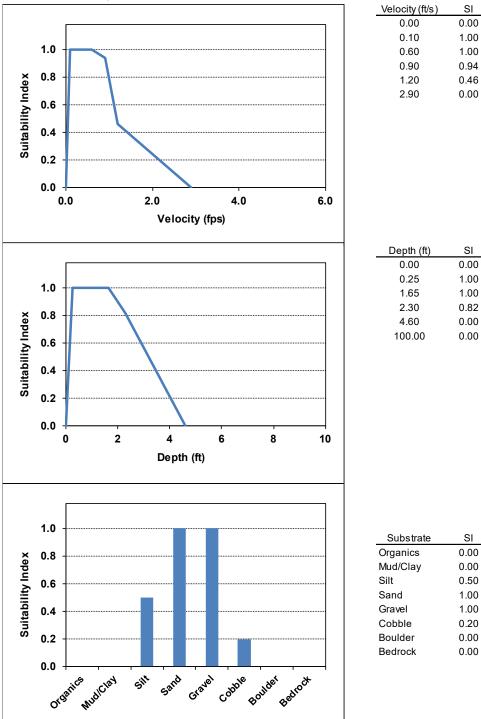



Walleye Fry

Source:

Walleye Juvenile


Source: McMahon et al., 1984


Walleye Adult

Walleye Spawning & Incubation

Fallfish Fry

Velocity and depth from brook trout fry curves (Deerfield River) Substrate developed by Charles Ritzi Source: Gomez and Sullivan, 2007

Fallfish Juvenile

Velocity and depth from brook trout fry curves (Deerfield River) Substrate developed by Charles Ritzi Source: Gomez and Sullivan, 2007

> SI 0.00

0.60

0.88

1.00

1.00

0.40

0.04

0.00

SI

0.00

0.00

0.11

1.00

1.00

0.27

0.24

0.07

0.07

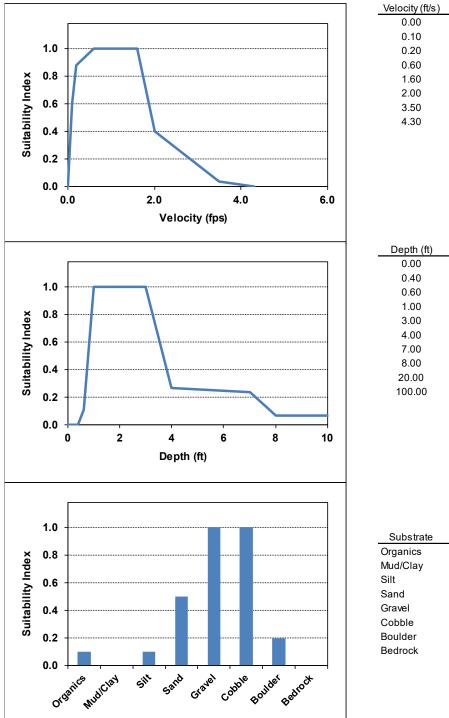
0.07

SI

0.10

0.00

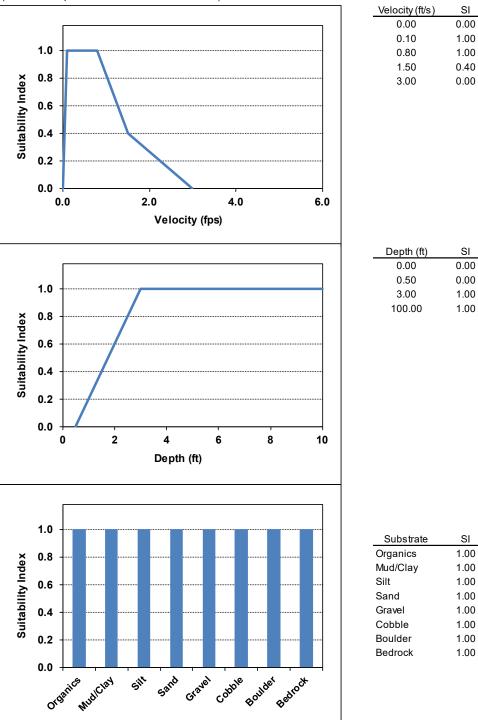
0.10


0.50

1.00

1.00

0.20

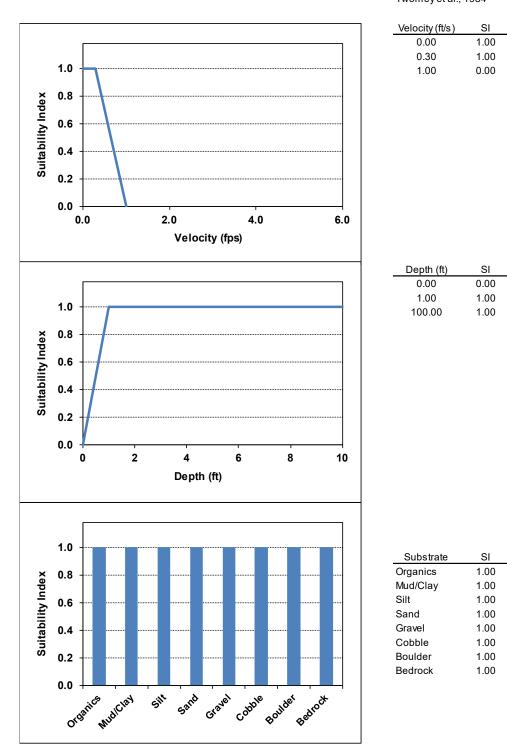

0.00

Fallfish Adult

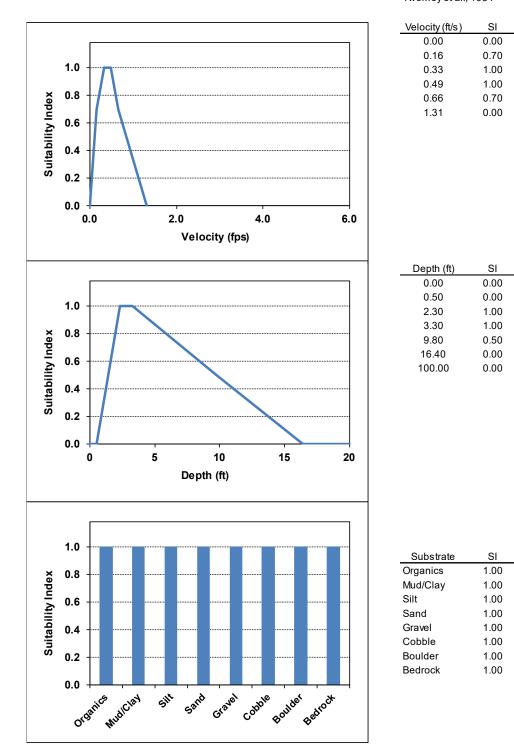
Developed from consultation with NYSDEC (New York Dept. of Environmental Conservation)

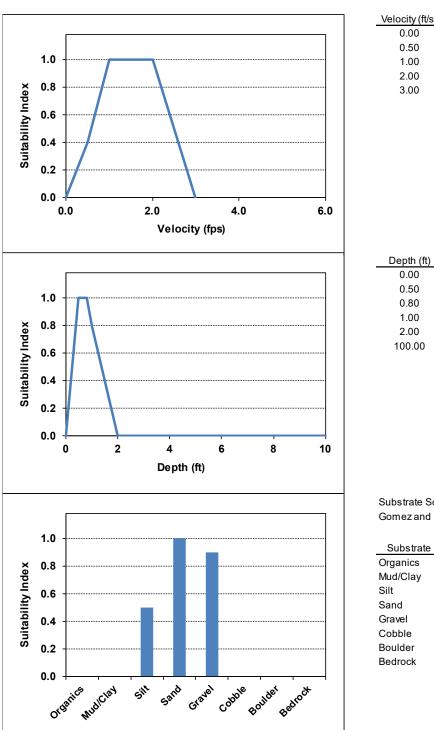
Source: Gomez and Sullivan, 2007

Fallfish Spawning & Incubation


Developed from consultation with NYSDEC (New York Dept. of Environmental Conservation)

(new i	TOTK De	pl. of Environmental Conservation)		
			Velocity (ft/s)	SI
			0.00	0.00
	1.0 -		0.10 1.00	0.80 1.00
			1.50	1.00
X	0.8 -		2.50	0.20
pd			3.00	0.00
ιζ	0.6 -		100.00	0.00
bil	0.4 -			
Suitability Index	0.4			
Ō	0.2 -			
	0.0 - 0.	0 2.0 4.0 6.0		
	0.	Velocity (fps)		
		velocity (ips)		
			Depth (ft)	SI
			0.00	0.00
	1.0 -		0.40	0.00
	1.0		0.80	1.00
X	0.8 -		2.30 4.50	1.00
pde			100.00	0.00 0.00
Suitability Index	0.6 -			
lide	0.4 -			
uit				
0	0.2 -			
	0.0 -			
	0.0	2 4 6 8 10		
		Depth (ft)		
	1.0 -			
	• •		Substrate Organics	SI 0.00
dex	0.8 -		Mud/Clay	0.00
, E	0.6 -		Silt	0.00
Suitability Index			Sand	0.00
tab	0.4 -		Gravel	1.00
Sui			Cobble	0.00
•••	0.2 -		Boulder Bedrock	0.00 0.00
	0.0		DEUTUCK	0.00
		inice unicital silt sand cravel couple and redroct		
	~0	nice hudched sit sand crave couple poulser pedroct		
	0.	<i>h</i> . <u> </u>		




Source: Twomey et al., 1984

White Sucker Adult/Juvenile

Source: Twomey et al., 1984

White Sucker Spawning & Incubation

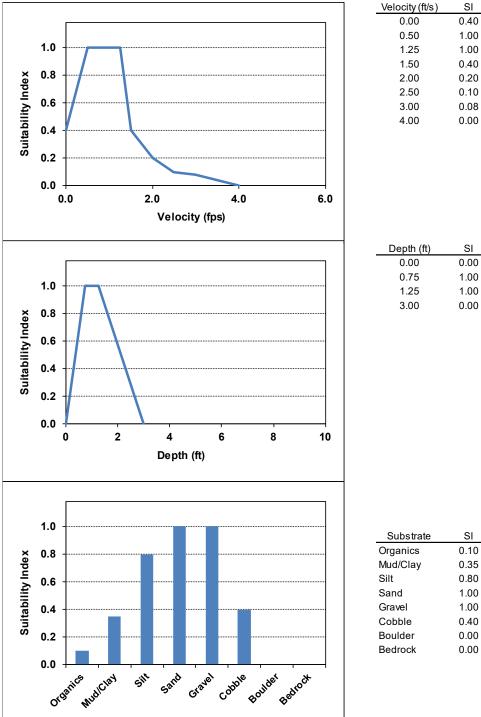
Source: Twomey et al., 1984

Velocity (ft/s)	SI
0.00	0.00
0.50	0.40
1.00	1.00
2.00	1.00
3.00	0.00

0.50	1.00
0.80	1.00
1.00	0.80
2.00	0.00
100.00	0.00

SI

0.00


Substrate Source: Gomez and Sullivan, 2007

Substrate	SI
Organics	0.00
Mud/Clay	0.00
Silt	0.50
Sand	1.00
Gravel	0.90
Cobble	0.00
Boulder	0.00
Bedrock	0.00

Longnose Dace Fry

Original curve identified as from USFWS HSC library Modified by VDFW for the Lamoille River IFS (Gomez and Sullivan, 2000) Source:

Gomez and Sullivan, 2007

Longnose Dace Juvenile

Original curve identified as from USFWS HSC library Modified by VDFW for the Lamoille River IFS (Gomez and Sullivan, 2000) Source:

Gomez and Sullivan, 2000

SI 0.00

1.00

1.00

0.35

0.20

0.13

0.05

0.00

SI

0.00

1.00

1.00

0.40

0.20

0.14

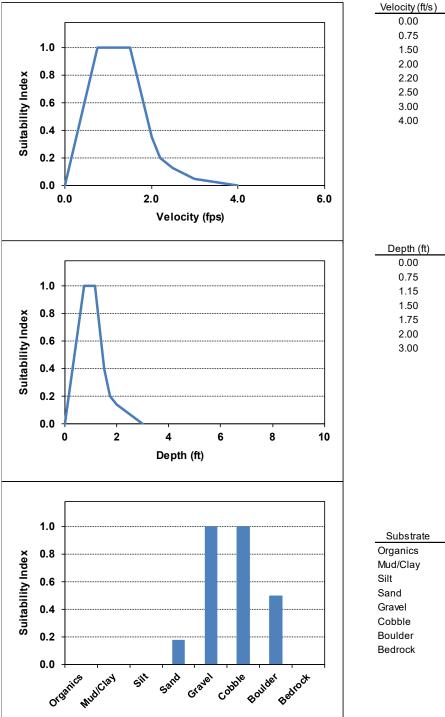
0.00

SI

0.00

0.00

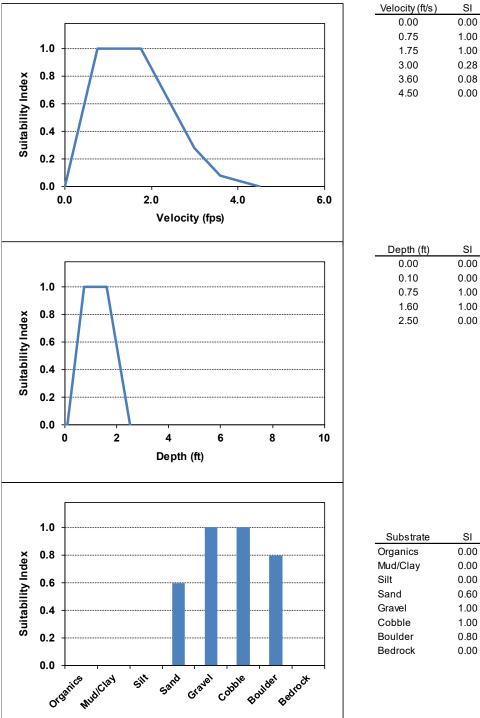
0.00


0.18

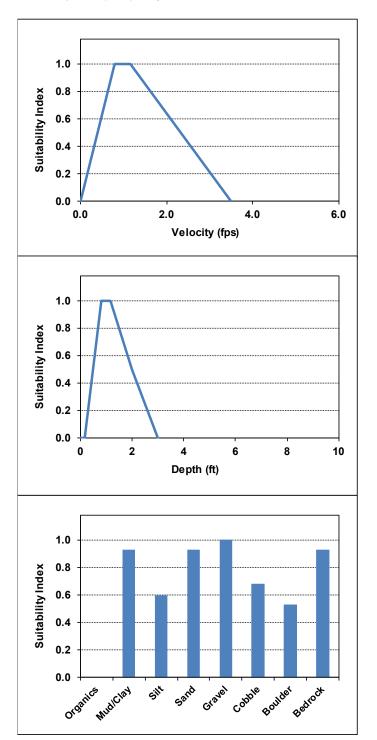
1.00

1.00

0.50


0.00

Longnose Dace Adult

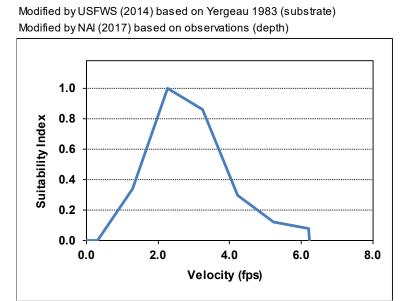

Original curve identified as from USGS HSC library Modified by VDFW for the Lamoille River IFS (Gomez and Sullivan, 2000) Source:

Gomez and Sullivan, 2000

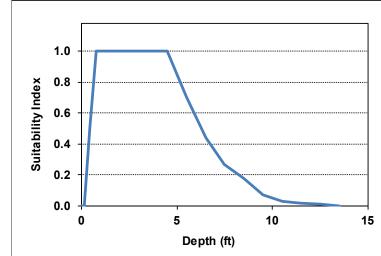
Tessellated Darter Adult

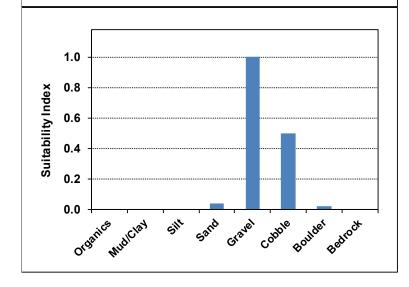
Modified by VDFW (2015) using sources

Source:


Warner et al. 2006,		
Aadland and Kuitunen 2006		
Velocity (ft/s)	SI	
0.00	0.00	
0.80	1.00	
1.15	1.00	
3.50	0.00	

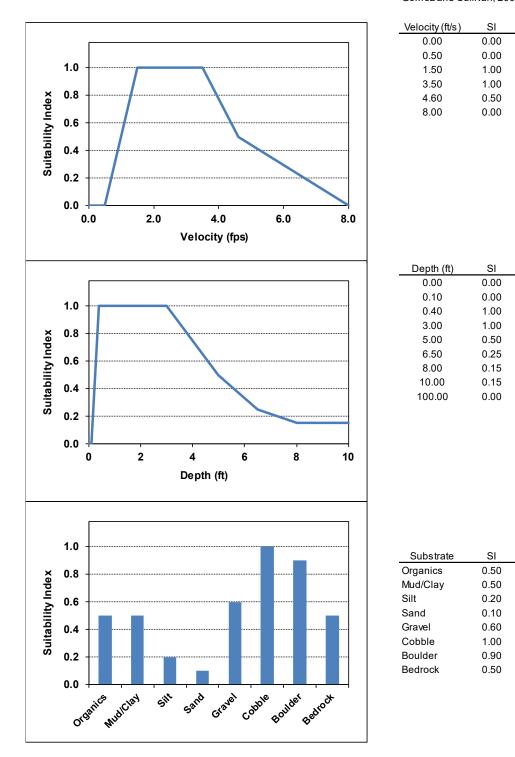
Depth (ft)	SI
0.00	0.00
0.16	0.00
0.80	1.00
1.15	1.00
2.00	0.50
3.00	0.00


Substrate Source: Aadland and Kuitunen, 2006 Johnny Darter- Surrogate for Tessellated Darter (PPL Bell Bend 2012)


(- /
Substrate	SI
Organics	0.00
Mud/Clay	0.93
Silt	0.60
Sand	0.93
Gravel	1.00
Cobble	0.68
Boulder	0.53
Bedrock	0.93

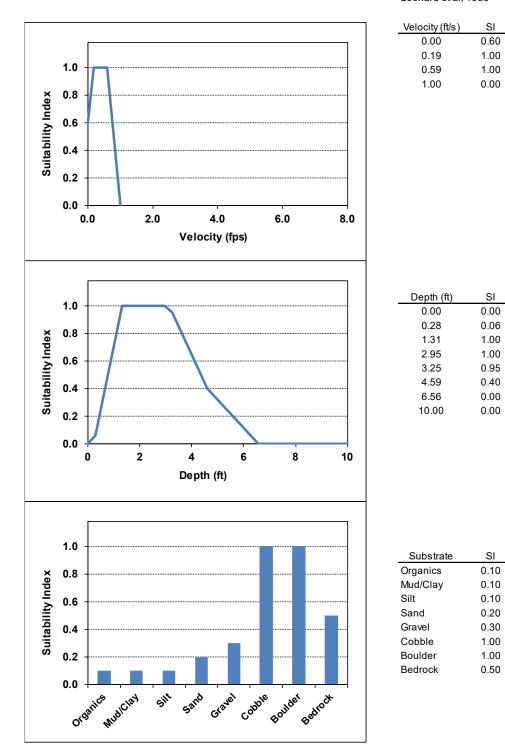
Sea Lamprey Spawning & Incubation

Kynard and Horgan, 2013 Yergeau, 1983		
Velocity (ft/s)	SI	
0.00	0.00	
0.30	0.00	
1.28	0.34	
2.26	1.00	
3.25	0.86	
4.23	0.30	
5.22	0.12	
6.20	0.08	
6.23	0.00	



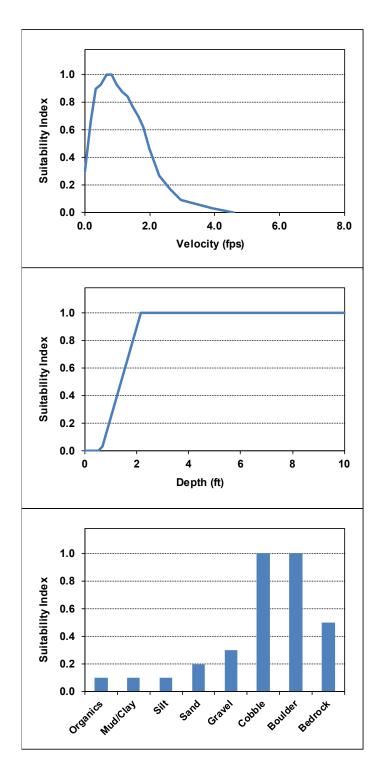
Depth (ft)	SI
0.00	0.00
0.13	0.00
0.46	0.50
0.79	1.00
4.50	1.00
5.50	0.70
6.50	0.44
7.50	0.27
8.50	0.18
9.50	0.07
10.50	0.03
11.50	0.02
12.50	0.01
13.50	0.00

Substrate	SI
Organics	0.00
Mud/Clay	0.00
Silt	0.00
Sand	0.04
Gravel	1.00
Cobble	0.50
Boulder	0.02
Bedrock	0.00


Macroinvertebrates

Source: Gomez and Sullivan, 2000

Smallmouth Bass Fry


Source: Leonard et al, 1986

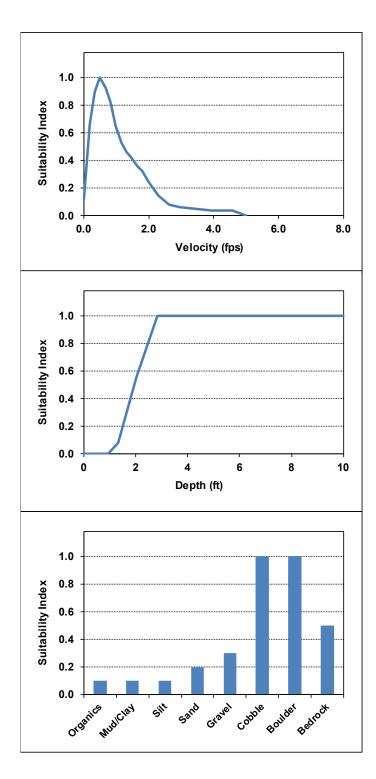
Smallmouth Bass Juvenile

Source: Groshens and Orth 1994

_

Velocity (ft/s)	SI
0.00	0.30
0.17	0.66
0.33	0.90
0.50	0.93
0.66	1.00
0.83	1.00
0.98	0.93
1.15	0.87
1.31	0.84
1.47	0.77
1.64	0.70
1.81	0.62
1.98	0.47
2.30	0.27
2.62	0.17
2.95	0.09
3.94	0.03
4.59	0.00

Leonard et al, 1986


Depth (ft)	SI
0.00	0.00
0.52	0.00
0.67	0.03
2.15	1.00
10.00	1.00

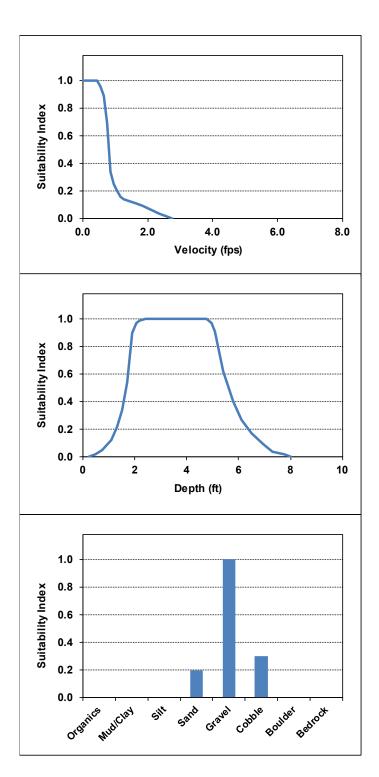
Leonard et al, 1986

Substrate	SI
Organics	0.10
Mud/Clay	0.10
Silt	0.10
Sand	0.20
Gravel	0.30
Cobble	1.00
Boulder	1.00
Bedrock	0.50

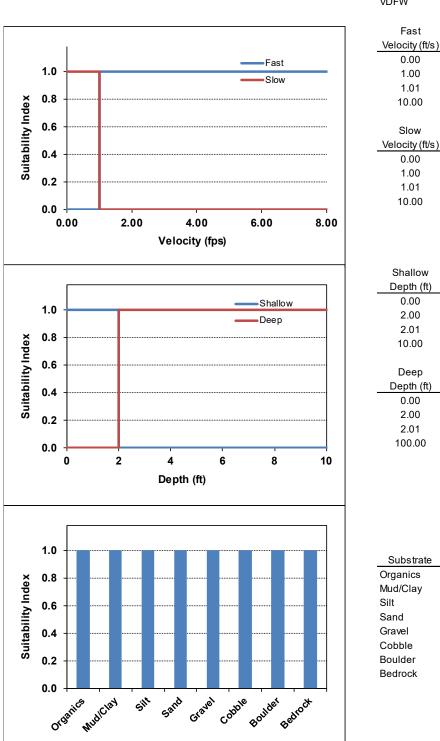
Smallmouth Bass Adult

Source: Groshens and Orth 1994

Velocity (ft/s)	SI
0.00	0.12
0.17	0.66
0.33	0.90
0.50	1.00
0.66	0.93
0.83	0.82
0.98	0.65
1.15	0.53
1.31	0.46
1.47	0.42
1.64	0.36
1.81	0.32
1.98	0.25
2.30	0.15
2.62	80.0
2.95	0.06
3.94	0.04
4.59	0.04
5.00	0.00


Leonard et al, 1986

Depth (ft)	SI
0.00	0.00
0.92	0.00
1.31	0.08
2.03	0.56
2.82	1.00
6.00	1.00
10.00	1.00


Leonard et al, 1986

	Substrate	SI
0	ganics	0.10
M	ud/Clay	0.10
Si	It	0.10
Sa	and	0.20
G	avel	0.30
C	obble	1.00
В	oulder	1.00
Be	edrock	0.50

Smallmouth Bass Spawning

Source: Allen, 1996	
Velocity (ft/s)	SI
0.00	1.00
0.45	1.00
0.55	0.96
0.65	
	0.89
0.75	0.69 0.34
0.85 0.95	0.34 0.25
1.05 1.15	0.20 0.16
1.15	0.10
1.25	0.14
1.85	
	0.09
2.35	0.04
2.55	0.02
2.75	0.00
Edwards et al., Depth (ft)	1983 SI
0.22	0.00
0.50	0.02
0.74	0.05
1.10	0.12
1.32	0.22
1.53	0.34
1.70	0.54
1.90	0.90
2.05	0.97
2.18	0.99
2.40	1.00
4.75	1.00
4.95	0.97
5.10	0.91
5.40	0.62
5.80	0.40
6.10	0.27
6.50	0.17
6.95	0.09
7.30	0.03
7.75	0.04
8.00	0.02
0.00	0.00
Allen, 1996	<u>c</u> .
Substrate	SI
Organics	0.00
Mud/Clay	0.00
Silt	0.00
Sand	0.20
Gravel	1.00
Cobble	0.30
Boulder	0.00
Bedrock	0.00

Generalized Habitat Criteria (GHC)

Source: VDFW

SI 0.00

0.00

1.00

1.00

SI

1.00

1.00

0.00

0.00

SI

1.00

1.00

0.00

0.00

SI

0.00

0.00

1.00

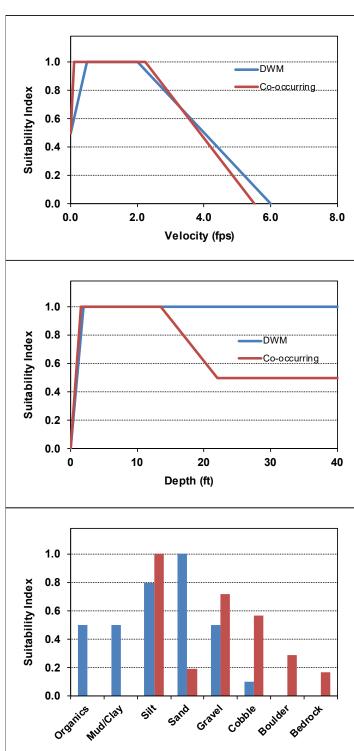
1.00

SI

1.00

1.00

1.00


1.00

1.00

1.00

1.00

1.00

Mussels - Dwarf Wedgemussel (DWM)	
Co-Occurring	

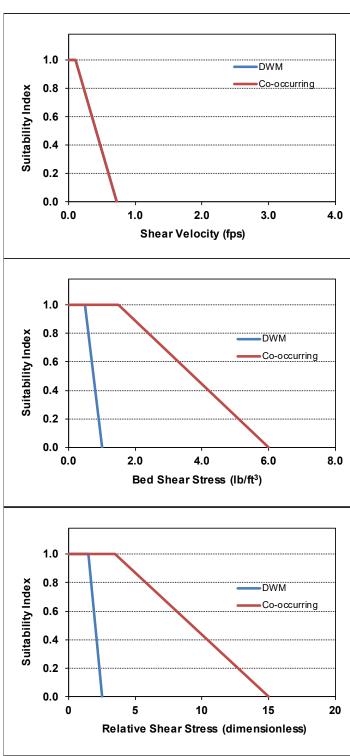
Normandeau a Biodrawversity		Normandeau Biodrawversit	ana
DWN	Λ	Co-occu	irring
MCV (ft/s)	SI	MCV (ft/s)	SI
 0.00	0.50	0.00	0.50
0.50	1.00	0.10	1.00
2.00	1.00	2.25	1.00

0.00

Co-0ccurring

5.50

0.00


Source:

DWM

6.00

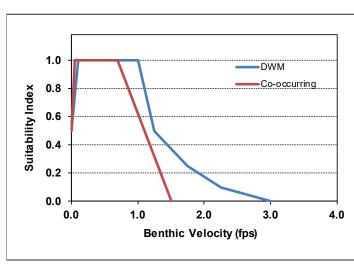
DWM		Co-occurring	
Depth (ft)	SI	Depth (ft)	SI
0.00	0.00	0.00	0.00
2.00	1.00	1.50	1.00
40.00	1.00	13.50	1.00
100.00	1.00	22.00	0.50
		30.00	0.50
		100	0.5

DWM		Co-occurring	
Substrate	SI	Substrate	SI
Organics	0.50	Organics	0.00
Mud/Clay	0.50	Mud/Clay	0.00
Silt	0.80	Silt	1.00
Sand	1.00	Sand	0.19
Gravel	0.50	Gravel	0.72
Cobble	0.10	Cobble	0.57
Boulder	0.00	Boulder	0.29
Bedrock	0.00	Bedrock	0.17

Mussels - Dwarf Wedgemussel (DWM)	
Co-Occurring	

Source:

Normandeau and Biodrawversity 2016


DWM

Co-Occurring Normandeau and Biodrawversity 2017

DWM		Co-occurring	
Velocity (ft/s)	SI	Velocity (ft/s)	SI
0.00	1.00	0.00	1.00
0.10	1.00	0.10	1.00
0.72	0.00	0.72	0.00

DWM		Co-occurring	
SS (lb/ft ³)	SI	SS (lb/ft ³)	SI
0.00	1.00	0.00	1.00
0.50	1.00	1.50	1.00
1.00	0.00	6.00	0.00

DWM		Co-occurring	
RSS	SI	RSS	SI
0	1.00	0	1.00
1.5	1.00	3.5	1.00
2.5	0.00	15	0.00

Mussels - Dwarf Wedgemussel (DWM) Co-Occurring

Source: DWM Co-0ccurring Normandeau and Ν Biodrawversity 2016 В

SO-Occurring	
Normandeau and	
Biodrawversitv 2017	

DWM Co-occurri		ring
SI	Velocity (ft/s)	SI
0.50	0.00	0.50
1.00	0.05	1.00
1.00	0.70	1.00
0.50	1.50	0.00
0.25		
0.10		
0.00		
	SI 0.50 1.00 1.00 0.50 0.25 0.10	SI Velocity (ft/s) 0.50 0.00 1.00 0.05 1.00 0.70 0.50 1.50 0.25 0.10

Literature Cited:

- Aadland, L.P., C.M. Cook, M.T. Negus, H.G. Drewes, and C.S. Anderson. 1991.
 Microhabitat preferences of selected stream fishes and a community-oriented approach to instream flow assessments. Section of Fisheries, Investigational Report. Minnesota Department of Natural Resources, Division of Fish and Wildlife. St Paul, Minnesota. 142pp.
- Aadland, L.P., and A. Kuitunen. 2006. Habitat suitability criteria for stream fishes and mussels of Minnesota. Minnesota Department of Natural Resources, Ecological Services Division, Fergus Falls and St. Paul, MN. 167pp.
- Allen, M.A. 1996. Equal area line-transect sampling for smallmouth bass habitat suitability criteria in the Susquehanna River, Pennsylvania. Pages B119-132 in M. LeClerc, C. Herve, S. Valentin, A. Boudreault, and Y. Cote, editors. Ecohydraulics 2000: Second international symposium on habitat hydraulics. Institut National de la Recherche Scientifique-Eau, Quebec, Canada
- Bozek, M.A., T. J. Haxton, and J. K. Raabe. 2011. Walleye and sauger habitat. Pp 133-197, in Biology, management, and culture of walleye and sauger, B. A. Barton, editor. 570 pages, American Fisheries Society, June 2011.
- Edwards, E.A., G. Gebhart, and O.E. Maughan. 1983. Habitat suitability information: smallmouth bass. USDI, Fish and Wildlife Service FWS/OBS-82/10.36. 47p.
- Exelon. 2012. Updated study report. Instream flow habitat assessment below Conowingo Dam, RSP 3.16, Conowingo Hydroelectric Project, FERC Project No. 405. Prepared by Gomez and Sullivan Engineers and Normandeau Associates.
- Greene, K. E., Zimmerman, J. L., Laney, R. W., & Thomas-Blate, J. C. 2009.
 Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. Habitat Management Series No.9. Washington, D.C: Atlantic States Marine Fisheries Commission.
- Gomez and Sullivan Engineers. 2000. Lamoille River Hydroelectric Project, FERC Project No. 2205. Instream flow and habitat study report. Prepared for Central Vermont Public Service Corp.
- Gomez and Sullivan Engineers, P.C. 2007. Glendale Hydroelectric Project FERC Project No. 2801. Final Report Bypass reach aquatic habitat and instream flow study.
- Groshens, T.P., and D.J. Orth. 1994. Transferability of habitat suitability criteria for smallmouth bass, Micropterus dolomieu. Rivers 4:194-212.

- Hightower, J.E., J.E. Harris, J.K. Raabe, P. Brownell, and C.A. Drew. 2012. A Bayesian spawning habitat suitability model for American shad in Southeastern United States rivers. Journal of Fish and Wildlife Management
- Kynard B. and M. Horgan. 2013. Habitat suitability index for sea lamprey redds. Unpublished manuscript. 5 pp.
- Layzer, J.B. 1974. Spawning Sites and Behavior of American Shad, Alosa sapidissima (Wilson), in the Connecticut River between Holyoke and Turners Falls, Massachusetts, 1972. Master of Science Thesis. University of Massachusetts, Amherst, Massachusetts.
- Leonard, P.M., D.J. Orth, and C.J. Goudreau. 1986. Development of a method for recommending instream flows for fishes in the Upper James River, Virginia. Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, Blacksburg, VA. 122pp.
- McMahon, T.E., J.W. Terrell, and P.C. Nelson. 1984. Habitat suitability information: walleye. United States Fish and Wildlife Service FWS/OBS-82/10.56. 43p.
- Normandeau Associates, Inc. (Normandeau) and Biodrawversity. 2017. ILP Study 24– Dwarf Wedgemussel and Co-Occurring Mussel Study, Development of Habitat Suitability Criteria for Co-Occcurring Mussels. Prepared for TransCanada Hydro Northeast Inc. Draft, 2017.
- Normandeau Associates, Inc. (Normandeau) and Biodrawversity. 2016. ILP Study 24– Dwarf Wedgemussel and Co-Occurring Mussel Study, Development of Delphi Habitat Suitability Criteria. Prepared for TransCanada Hydro Northeast Inc. May 26, 2016.
- Steir, D.J. and J.H. Crance. 1985. Habitat suitability index models and instream flow suitability curves: American shad. U.S. Fish and Wildlife Service Biological Report 82(10.88). 34pp.
- Twomey, K.A., K.L. Williamson, and P.C. Nelson. 1984. Habitat suitability index models and instream flow suitability curves: white sucker. United States Fish and Wildlife Service FWS/OBS-82/10.64. 56pp.
- Warner, G.S., F.L. Ogden, A.C. Bagtzoglou, and P. Paraciewicz. 2006. Long-term impact analysis of the University of Connecticut's Fenton River water supply wills on the habitat of the Fenton River. Report prepared by the University of Connecticut Departments of Natural Resources Management and Engineering and Civil and Environmental Engineering. March 7, 2006. 172pp.
- Yergeau, K.M. 1983. Population demography, riverine movement and spawning habitat of the sea lamprey, Petromyzon marinus, in the Connecticut River.M.Sc. thesis. University of Massachusetts, Amherst, Massachusetts. 634 pp.