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Map legend
Surficial map units

B Alluvial fan (Af)

B Artificial fill (Ar)

B Bedrock (Br)

| Channel alluvium (Al)

.| Eolian deposits (E0)

| Floodplain (Fp)

. Flood terrace (Ft)

. Glaciofluvial deposit (Gfd)
. Glaciofluvial esker (Gfe)
" Glaciofluvial terrace (Gft)
I Glaciolacustrine clay (Glc)
I Glaciolacustrine sand (Gls)
B Glaciolacustrine terrace (Glt)
B Glaciolacustrine undifferentiated (Glu)
| Stream terrace (St)

I Stream terrace high (Sth)
I Stream terrace low (Stl)

B Til(T)

B Thin till (Tt)

| Tributary alluvium (Tra)

| Tributary stream terrace (Trt)
I Swamp deposits (Sw)

. Water (W)

Appendix B. Surficial geologic maps legend.
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Appendix B.

Surficial geologic maps. Plate 1 of 16.

Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix B. Surficial geologic maps. Plate 2 of 16.

Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix B. Surficial geologic maps. Plate 3 of 16.

Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix B. Surficial geologic maps. Plate 4 of 16. Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Basemap imagery: USA Topo Maps and LiDAR hillshade.

Appendix B. Surficial geologic maps. Plate 5 of 16.
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Appendix B. Surficial geologic maps. Plate 6 of 16.

Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix B. Surficial geologic maps. Plate 7 of 16.

Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix B. Surficial geologic maps. Plate 8 of 16. Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix B. Surficial geologic maps. Plate 9 of 16.

Basemap imagery: USA Topo Maps and LiDAR hillshade.



St St St Glu
T T
St Ar Tt
Eo
ICHESTER SPRINGFIELD Gle St St gt -
Ar StStW AISt Bf Glu
Gls St St
Br Trt WGlIc Trt
Trt w Br
B T Glsgls Gls Sw
r
Tt r
Acworth St
Af
Ar Tt Tt Cls Al St st re Afele ols
Br A ey Gle Algt
Stg e, SUBArFt st aiSt St 5 St Af
Trt Srst T w Ft St Ar
Tt Stgy Mg Al Ft Sw
T Trt r Ar St Trt Br ArFt Ft Gft
. Br TraBr Br Gl AfCls St Gfd Ft AfBrB Gftat
d Gls Br stblc  “Glc Stst Al " Ar
ATH Trt Tt s B'Br A St StGlesy st Gfd Ft E Br " Glc
StSt Stt AIFtAI Ft., st sAtI g St alftar - FOst w
St als Mt Ft FrwSt ATGftAfg,
Gls | Stst Gid St
Stp, St FtAL Al ArFt St Glc
FtFt A Al Ar
Trt Br Fp Ar Af
st Gls FUA Ar - Gft st Trt
Br Glc Af
Gle Ft T BrT
Tra Gle
Br Ft St Glc W
GlsGlc
ArAr Ft Glc St
Br Br St
Tt
GISBI g st~ st ArGlc
Ar Tra Eo St
St Eo Al
Ar Glc A|GIC WSW
T
st St GIcAr Tt Trt Al St
Sw Glc StSt T
Trt Tre Trt
Tra Ar Trt Trt
Trt Gl st rt
Tt Glc gt Glc “icCle
T GlcGIcAr  Gleay siBrrt
Glc Glc Glc_St
Ar Sw Trt ArSt FtGIC TrAr TrtBr
St Glert Gl 1
Af
Ar Trt St
T
T Gl
c
St
T Trt
Ft Tra
T Br
Glc Glu
Ar Al
Tt Al TrtGluBr
T Glc
Glc Ar
Ar Ft
T BAr Ar  Trt Gt
r
Br Ar Ar CleStSt Lot
St
clu SV Gy 1yt GIS Al St Br Gft
T Tt Tra Gle
Ar Ar - St
Gluqy T Br BrGlc st ©f
B Br Al
r Br
Trt Gls
BrGls St
Gluar T Br Ar Gft
Ar Br
Brrt®IC Gls Sty Fteg
Glc ststoft
Glc
TraTra Al stot Gft
Trt Glc Ft st Gft
Gls Al Al St
Ar Glc GlcSt Ft
Al Sw
Ar Sw
Glc 5t Glc AlArst
T
StSt Sw
A BrOls St Sty
St g¢GlesSw Ft st B 7
GlsBr T st Ft GlcTrt Br
AlAr
Al
Trt TGIsStAr Al FtArSt
rt BrAl
Arg, Al O FtTe Br 1y
ra Glc
Tt cls Ft Al St E"I'rrt Trt
Br_sw Ft St
BBr T Al St Br Glc rt
r GlsAr stStal Trt
TtAr Trt
St
Trt Ar Tt Ar St
AlIFt Af s Br
Ft ArAl Glct TrtAr
Gls Ar Trt AIFtW .
r
Tra.-ll.-rrtt Tt GIs St Mais st Al Af
TraTrast Tt StTrt T aGls St Al Ft e FSt
Trt St st TraT Ar Sw Ar Ar st
Tra _IT@Al 1t St Br st Al
Tra plAIL Al St St
BrAr . ITraA|StSt S}\ Ft St Al Ftp FtAI St
St Al Tt An, FtFAT Al e T N
Wy StAT Tt giTra AlAI| st Br
Trt Ttg, Al Br Tt
Br "Br Al Ft St Eo Tt
Trt Trt Al Al StAIFt Al
AFArAl p| Tra stFt T
cieSW Al Al Ste, st "t T _
S?Af Al Al Al St Miles
AT SWA 0O 025 05 0.75 1
AL GIsAf Ft
St Al Al COP YT Z U T T OO T O C Ug TP T e O UTTe Ty, T o Uoe
Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix B. Surficial geologic maps. Plate 11 of 16.

Basemap imagery: USA Topo Maps and LiDAR hillshade.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 1 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 2 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 3 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 4 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 5 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 6 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 7 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 8 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 9 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 10 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 11 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 12 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 13 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1958 and 2014 erosion. Plate 14 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 1 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 2 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 3 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 4 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 5 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 6 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 7 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 8 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 9 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 10 of 14.

Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 11 of 14. Basemap imagery: USA Topo Maps.
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Appendix D. Comparison of 1978 and 2014 erosion. Plate 12 of 14.

Basemap imagery: USA Topo Maps.
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Appendix E - Logistic Regression Analysis of Bank Instability

Prepared for: Prepared by:

Kristian Omland, PhD
Field Geology Services, LLC Mergus Analytics, LLC
Farmington ME 04938 Jericho VT 05465

komland@mergusanalytics.com

1. Summary

Instability was analyzed along both banks of a 124-mile long study area of the Connecticut River
from the upper extent of the Wilder impoundment to just downstream of VVernon dam. Instability
was modeled as a binary (present/absent) variable using candidate predictors of bank height,
median water surface elevation (WSE) fluctuation, shear stress at the high end of project
operational flows (Case 1, “low flow”), shear stress at flood flows (Case 2, “high flow” the
approximate 10-yr recurrence interval), presence of armoring or forest vegetation, bend
geometry (inside, outside, or straight), and the three hydropower projects (Wilder, Bellows Falls,
and Vernon) in the study area. Multiple logistic regression and its extension in generalized
additive models using the binomial distribution are widely used modeling strategies used to
understand variation in binary variables (Venables & Ripley 2002, Wood 2005).

No predictors were very good and none explained any more than 3.5% of deviance. The richest
multiple predictor model that was fit to the data only explained 8.2% of deviance, while the
strongest single predictor was bank height, which explained about 3.5% of deviance whether it
was modeled as a binned factor in the logistic regression framework or a continuous predictor in
the generalized additive models framework. Banks lower than 10 ft were less likely to be
unstable while there was a peak of instability around 20 ft of bank height. Shear stress at low
flow modeled as a binned factor was the next strongest predictor, explaining 3.3% of deviance,
although it did not perform as well when modeled as a continuous predictor with all the variation
at low shear stress. Other variables, including median WSE fluctuation, shear stress at high flow,
armoring, and bend geometry, explained relatively little deviance; presence of forest trees at the
top of the bank ranked lowest. There was not a substantial amount of variability in bank
instability attributable to one hydropower project over another.

Logistic regression modeling of bank instability suggested a region of higher than average bank
instability for banks 20-40 ft tall; at greater median water surface elevation fluctuation levels,
that region of instability expanded to higher banks. Armoring contributed a substantial additional
effect, with armored banks being approximately 17% less likely to be unstable than unarmored
banks when considering armored banks as a combination of those banks categorized as
“armored” and “failing armor”. Beyond that, there were diminishing returns for including
additional predictors. The interaction between bend geometry and armoring was examined with
the data suggesting that there is greater bank instability on the inside of bends and that armoring
has its greatest benefit in preventing bank instability on straight reaches.
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2. Data preparation

Field Geology Services provided data in two comma-delimited text files corresponding to the left
and right riverbanks. Those data were parsed, prepared, and analyzed in R (R Core Team 2016).
The 1.3 million records created by segmenting the GIS shapefiles of the bank lines into points
every foot along the banks provided an exhaustive estimate of the response and predictor
variables for the 124-mile length of the river included in the study. The structure of the data is
such that observations are not independent, a violation of one of the usual assumptions of
regression. Rather, for a mapped feature that is hundreds to thousands of feet long, there are
hundreds or thousands of records that are identical in terms of bank instability and all candidate
predictor variables. Nonetheless, the models used here are useful for computing empirical
estimates from the data, particularly through smoothing and estimation of additive effects and/or
interactions.

The unique identifier provided with each record was modified by prefixing either L for left or R
for right bank using as many as five leading zeros. With record identifiers constructed that way
(i.e., LOO00O1 through R667759), it was possible to combine the data from the left and right

banks while retaining an identifier that could be used to locate records in the original data files.

Bank instability was recoded as a binary variable: 1 for unstable and 0 for stable.

The candidate predictor, armored (present/absent), was extracted from the Stability _ field with
values 1-4 being un-armored while values 5-6 were armored (i.e., armored and failing armor).
Forested (Y/N) was interpreted from the Buffer_Cat field with 1 referring to mature trees as
determined from remote sensing data and O referring to any other condition (agriculture,
shrubland, marsh, etc.). Bend was recoded for convenience with O referring to straight reaches
but using -1 (rather than 1) to indicate inside and 1 (rather than 2) to indicate the bank on the
outside of a bend.

Binned representation of bank height and median WSE fluctuation were constructed following
quantiles (cutpoints) used in the original study report. Binned representation of shear stress was
constructed based on ranks to populate ten approximately equally populated deciles.

3. Logistic regression models of bank instability

All models described here are essentially logistic regression models in the Generalized Linear
Models (GLM) framework with bank instability (1 unstable, O stable) modeled using a binomial
distribution and Shape_Leng applied as a weight (Shape_Leng was 1 for 96.6% of observations
but took on values between 0.01 and 1.01).

With no predictors (intercept-only model), probability of bank instability was 39.7%,
representing the percentage of banks mapped as unstable.

Confidence intervals about the estimates are not reported for two reasons. First, conceptually
with a foot-by-foot census of both banks of the 124-mile study area, there has been no sampling
and there is no sampling error to be estimated. Second, in practical terms the confidence intervals
estimated from a data set of over 1 million records are so narrow as to be uninformative.

Candidate predictor variables were bank height, median WSE fluctuation (fluctuation), shear
stress (independently at low and high flows, averaged across full channel width), presence of
armoring or forest vegetation, and bend geometry (inside, outside, or straight). The three
hydroelectric projects were optionally included as a covariate to investigate whether the effect of
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the other predictors differed in areas influenced by the three projects. For the continuous
predictors of bank height, fluctuation, and shear stress, models were fit using the variables as
binned factors in logistic regression or as smooth predictors in the generalized additive models
(GAM) framework.

3.1. Single Predictors

Models with single predictors were fit using either GLM (Table 1) or GAM (Table 2). Typically,
model selection is an optimization problem balancing complexity (the number of estimated
parameters) and fit. However, with over 1 million records, these data support estimation of
models of virtually unlimited complexity. However, there are diminishing returns in terms of
improving fit: the best single-predictor models explain about 3.5% of null deviance while models
with multiple factors do not improve that much. Furthermore, the cost of increasingly complex
models is difficulty in interpretation. For this analysis, rather than relying on an automated model
selection process, model complexity was gradually increased starting with the best single-
predictor model and adding terms one-by-one until model fit and interpretability seem balanced.

Table 1. Logistic regression models using single factor predictors (continuous variables binned).
Intercept-only model in first row (1 estimated parameter). Degrees of freedom (df) are the
number of estimated parameters; deviance is a measure of model fit (lower values reflect better
fit; deviance can be interpreted in a similar way to residual sum of squares in ordinary linear
models). Other models listed in decreasing order of model fit. Percentage deviance explained is
the decrement from the intercept-only model [e.g., with 1,759,429 the deviance of the intercept-
only model, the model that includes bank height diminishes deviances by 3.525% (1,759,429 -
1,697,407) / 1,759,429 = 3.525%.]

Model df Deviance ke dev_lance
explained

(intercept) 1 1,759,429 NA

Bank height (bins) 9 1,697,407 3.525
Shear stress, low flow (bins) 10 1,700,709 3.337
Fluctuation (bins) 14 1,739,493 1.133
Shear stress, high flow (bins) 10 1,743,720 0.893
Armored 2 1,747,416 0.683
Bend geometry 3 1,755,146 0.243
Project 5 1,757,864 0.089
Forested 2 1,758,926 0.029

Table 2. GAM models using continuous single factor predictors. Model deviance may be
compared to the intercept-only model in Table 1.

Model df Deviance e dev_lance
explained
Bank height 4.99 1,698,417 3.468
Shear stress, low flow 4.96 1,739,895 1.110
Shear stress, high flow 4.97 1,744,550 0.846
Fluctuation 4.92 1,756,019 0.194
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3.1.1. Bank Height

Bank height had been divided into nine approximately equally-populated bins for the original
study report (Table 3). Probability of bank instability was lower than average for banks less than
5 ft high and higher than average for banks between 15 and 30 ft high; for banks higher than 30
ft, instability was close to average (Figure 1). There does not appear to be a linear relationship
between bank height (or any transformation of bank height) and instability, therefore the
relationship was modeled in a GAM using a flexible functional form (tensor product). Using the
cutpoints between bins as knots for the fitted GAM (8 knots), the general pattern of low
instability on low banks and greatest instability on banks 15-25 ft high is reinforced. Permitting
the curve-fitting software to select the complexity of the smooth curve automatically, only 5
knots were supported, which is a simpler and smoother model, but the interpretation remains
similar with below-average bank instability on banks less than 6 ft high and peak instability on
banks about 20 ft high (x5 ft.; Figure 2)

Table 3. Proportion of riverbank in each bank height bin that is unstable, and ratio of that
proportion to the overall proportion, 0.397 (i.e., the 39.7% of the banks that are unstable). Where
the erosion ratio is less than 1, the proportion unstable is less than the overall proportion, and
vice versa.

. . Proportion Erosion
Bin Realized Range N Unstable Ratio
y<1 -2.1 0.9 69,305 0.155 0.39
1<y<5 1 4.9 119,443 0.177 0.45
5<y<8 5 7.9 94,112 0.393 0.99
§<y<10 8 9.9 98,317 0.361 0.91
10<y<15 10 149 | 256,793 0.415 1.05
15<y<20 15 19.9 | 222,054 0.488 1.23
20<y<30 20 29.9 | 202,898 0.497 1.25
30<y<50| 30.1 49.8 | 161,975 0.409 1.03
y >50 50 97.4 | 107,608 0.390 0.98
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Figure 1. Probability of bank instability by binned bank height; the realized median within each
bin is used to fix the x-axis value of each point. Overall average indicated by horizontal line.
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Figure 2. Smooth (tensor product) model of the relationship between bank height and bank

instability. Extra lines and axis labels added for interpretability. Instability is below average for
banks lower than 10 ft. (or higher than 52 feet) and peaks at 49% for banks around 19 ft. high.
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3.1.2. Median Water Surface Elevation Fluctuation

Median WSE fluctuation (fluctuation) ranged from less than 1 ft to over 7 ft (in riverine reaches)
but more than 71% of the banks in the study area had a median fluctuation range of < 1.5 ft.
Instability ranked highest in bins representing fluctuations 3-3.5 ft, 1.5-2 ft, and 5.5-6 ft; it
ranked lowest in bins 6-6.5 ft, over 7 ft, and 4.5-5 ft (Table 4, Figure 3). Cutting the range into
deciles (with the first 7 deciles all squeezed into 0.67-1.4 ft) did not make for a more regular or
interpretable result. Fitting a GAM (tensor product) to the data resulted in a model with a hump
around 2.25 ft, but overall little variation is observed over the range of fluctuation (Figure 4).

Table 4. Proportion of riverbank in each fluctuation bin that is unstable and ratio of that
proportion to the overall proportion, 0.397. Where the erosion ratio is less than 1, proportion
unstable is less than the overall proportion, and vice versa.

: . Proportion Erosion

Bin Realized Range N Unstable Ratio
y<1 0.67 0.99 295,751 0.427 1.08
1<y<15 1.00 1.49 650,504 0.374 0.94
1.5<y<?2 1.50 1.99 65,911 0.525 1.32
2<y<25 2.00 2.49 39,523 0.459 1.16
25<y<3 2.50 2.99 19,294 0.437 1.10
3<y<35 3.00 3.49 31,707 0.563 1.42
3.5<y<4 3.50 3.99 36,012 0.376 0.95
4<y<45 4.00 4.49 40,670 0.353 0.89
45<y<5 4.50 4.99 66,286 0.295 0.74
5<y<b5 5.00 5.49 26,874 0.319 0.80
55<y<6 5.50 5.99 36,694 0.506 1.28
6<y<6.5 6.00 6.49 9,447 0.159 0.40
6.5<y<7 6.50 6.99 11,955 0.313 0.79
y>7 7.00 7.10 1,877 0.241 0.61
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Figure 3. Probability of bank instability by binned fluctuation; the realized median within each
bin is used to fix the x-axis value of each point. Overall average indicated by horizontal line.
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Figure 4. Smooth (tensor product) model of the relationship between fluctuation and bank

instability.
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3.1.3. Shear Stress

Estimated shear stress at “Case 1” operational flows (Case 1 condition was taken as the
discharge at the upper end of the project’s operating range, channel-wide average) was 0 pounds
per square foot (psf) for 80,652 records and was as high as 6.29 psf in the riverine section just
below Bellows Falls dam. Records were assigned to approximate deciles based on Case 1 flow
shear stress although, because of limited precision, bins could not be equally populated (Table
5). Instability was below average where shear stress at the Case 1 flow was less than 0.02 psf.
Instability appeared more prevalent where Case 1 flow shear stress was between 0.02 and 0.2 psf
(Figure 5).

Estimated shear stress at “Case 2” high flows (Case 2 condition was taken as the approximate
10-year recurrence interval, channel-wide average) ranged from 0.01 to 15.63 psf. Bank
instability was close to average across most of that range (Table 6, Figure 7).

When GAMs were fit to Case 1 and Case 2 shear stress data, both models were dominated by a
tail of no instability above a certain shear stress level (Figure 6, Figure 8). For Case 1 flow
conditions, there were no instances of unstable bank where shear stress was greater than 1.52 psf
(represented by 5,361 records). For Case 2 high flow conditions, there was no bank instability
where shear stress was greater than 1.413 psf (5,083 records).

Table 5. Proportion of riverbank in each Case 1 operational flow shear stress bin that is unstable
and ratio of that proportion to the overall proportion, 0.397. Where the erosion ratio is less than
1, Proportion unstable is less than the overall proportion, and vice versa.

. . Proportion Erosion

Bin Realized Range N Unstable Ratio
1 0 | 0.0099 | 103,582 0.215 0.54

2 0.01 247,927 0.274 0.69

3| 00101 | 0.0199 | 34,074 0.293 0.74

4 0.02 211,483 0.418 1.05

5| 0.0201 0.0299 39,645 0.450 1.14

6 0.03 0.0399 | 130,120 0.529 1.33

7 0.04 0.0546 | 165,943 0.493 1.24

8| 0.0547 0.0799 | 130,540 0.483 1.22

9 0.08 0.1299 | 135,946 0.474 1.19
10 0.13 6.29 133,245 0.329 0.83
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Figure 5. Probability of bank instability by binned shear stress in Case 1 operational flow

conditions; the realized median within each bin is used to fix the x-axis value of each point; note
the compressed x-axis compared to Figure 6. Overall average indicated by horizontal line.
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Figure 6. Smooth (tensor product) model of the relationship between shear stress (Case 1
operational flow; note the expanded x-axis compared to Figure 5) and bank instability.
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Table 6. Proportion of riverbank in each Case 2 high flow shear stress bin that is unstable and
ratio of that proportion to the overall proportion, 0.397. Where the erosion ratio is less than 1, the
proportion unstable is less than the overall proportion, and vice versa.

: . Proportion Erosion
Bin Realized Range N Unstable Ratio
1 0.01 0.05 141,742 0.462 1.17
2 0.0501 0.08 138,194 0.371 0.93
3 0.0801 0.1099 110,893 0.370 0.93
4 0.11 0.1299 126,560 0.393 0.99
5 0.13 0.1491 148,739 0.399 1.01
6 0.1492 0.17 147,954 0.434 1.09
7 0.1701 0.2045 118,647 0.431 1.09
8 0.2046 0.25 138,485 0.441 1.11
9 0.2501 0.3499 125,958 0.388 0.98
10 0.35 15.63 135,333 0.266 0.67
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Figure 7. Probability of bank instability by binned shear stress in Case 2 high flow conditions;

the realized median within each bin is used to fix the x-axis value of each point; note the
compressed x-axis compared to Figure 8. Overall average indicated by horizontal line.
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Figure 8. Smooth (tensor product) model of the relationship between shear stress (Case 2 high
flow; note the expanded x-axis compared to Figure 7) and bank instability.
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3.1.4. Other Factors
e Unarmored banks (the large majority of the study area) had somewhat higher than
average instability: 42.0%. In contrast, armored banks had only 30.7% instability.

e Straight sections had 42.1% instability. Insides of bends had 40.5% while the outside of
bends had 35.6% instability.

e Forested banks had 40.1% instability while unforested banks had 37.6% instability.

e Bank instability varied little between the three hydropower projects. Bank instability was
only 34.5% in the Bellows Falls riverine section (given the long length of bedrock
immediately downstream of the dam) but elsewhere bank instability was close to the
study area average of 39.7%.

3.2. Multiple Predictors

3.2.1. Maximizing goodness of fit using GAMS

Beginning with the single-predictor model that explained the most deviance, other factors were
considered in addition, to better explain the deviance. Bank height explained about 3.5% of bank
instability, whether using it as a binned factor or a continuous predictor in a GAM. Adding shear
stress during Case 1 flow or WSE fluctuation to the GAM increased deviance explained to
5.96% and 4.93%, respectively; and adding armor as a third variable increased that quantity to
7.13% and 6.45%, respectively (Table 7). Adding bend geometry as a fourth variable increased
the percent deviance explained to 7.39% and 6.75%, respectively, representing diminishing
returns for added model complexity given the limited increase in the percent deviance explained.

Models adding Case 1 flow shear stress are uninformative because they are dominated by two
features (Figure 9). First, all the instability is depicted in the narrow region where shear stress is
low, therefore there is virtually no resolution on how instability changes as shear stress increases.
Second, all of the instances of shear stress being greater than 1.5 psf (at Case 1 flow) are along
banks that are 7.9, 37.3, or 49.3 ft high, therefore the low estimates for the highest shear stresses
for Case 1 flow conditions at other bank heights reflect a lack of data rather than bank stability.

The model including WSE fluctuation in addition to bank height depicts a ridge of higher than
average bank instability on banks around 20-40 ft. high that flares out as WSE fluctuation
increases (Figure 10). The effect of armoring is modeled as an overall average adjustment, which
lowers the probability of instability by 17%.

The model adding bend geometry increased the percent deviance explained only to 6.75%, again
representing diminishing returns, with a contour plot of the results suggesting no different
interpretation.
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Table 7. GAM models using numerous continuous factor predictors and/or factors. Model
deviance may be compared to the intercept-only model in Table 1 and Table 2. Bank height and
WSE fluctuation were modeled allowing the algorithm to automatically select the knots rather

than using the cutpoints from the original study report.

%o Deviance

Model df Deviance .
Explained

Bank Height 4.99 1,698,417 3.47
Bank Height, shear-low (Case 1 flow) 21.99 1,654,581 5.96
Bank Height, shear-low (Case 1), armored 22.97 1,633,957 7.13
Bank Height, shear-low (Case 1), armored, bend 24.96 1,629,480 7.39
Bank Height, fluctuation 24.88 1,701,352 4.93
Bank Height, fluctuation, armored 25.83 1,674,089 6.45
Bank Height, fluctuation, armored, bend 27.74 1,668,668 6.75

Shear stress, low flow
3

Bank Height (ft)

Figure 9. Contour plot of a fitted GAM with bank height (x-axis) and shear stress at Case 1 flow
(y-axis) modeled as continuous predictors (tensor product). Labeled contour lines delimit regions
with more than the specified probability of bank instability. The extensive purplish-blue regions

were largely unobserved (e.g., no banks taller than 37.3 feet with more than 1.52 psi sheer

stress).
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Figure 10. Contour plots of a fitted GAM with bank height (x-axis) and WSE fluctuation (y-axis)
modeled as continuous predictors (tensor product) and armoring a factor (top panel un-armored,
bottom panel with armor). Labeled contour lines delimit regions with more than the specified
probability of bank instability.

3.2.2 Maximizing goodness of fit using logistic regression

Using an automated model selection routine (stepAlC, Venables & Ripley 2002), a model was fit
using all seven variables additively (binned continuous variables: bank height, WSE fluctuation,
shear stress at Case 1 flow, shear stress at Case 2 high flow; and factors: bend, armored,
forested). The routine adds terms sequentially that most improve model fit. The first three terms
added (i.e., those that most improved model fit) were bank height, shear stress during Case 1
flow events, and WSE fluctuation. As terms were added, the residual deviance declined, but with
diminishing returns. At the end of the sequence, adding forested bank as a predictor diminished
residual deviance from 1,616,250 to 1,615,963, which improved the percent deviance explained
only from 8.138% to 8.154% ( Figure 11). In this and other efforts, no statistical model of the
data was found that could explain more than about 8.2% of deviance.
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Figure 11. Residual deviance (left) and percent deviance explained (right) for a sequence of
logistic regression models adding terms in the order that most diminishes residual deviance; each
model includes all of the terms in the model to the left plus the additional term given in each
label from left to right. Percent deviance explained is relative to the intercept-only model.

3.2.3 Dirilling down for insight

While bank height, WSE fluctuation, and shear stress may rank higher in terms of deviance
explained, analysis of armoring and bend geometry as predictors yields some insight. Armoring
reduces bank instability: 42.0% of unarmored banks were unstable while only 30.6% of armored
banks were unstable. In addition, the outside of bends had lower than average bank instability
(35.6%) while inside bends (40.5%) and straight reaches (42.1%) had greater than average bank
instability.

There is a greater amount of armor on the outside of bends (24% of banks classified as outside
bends were armored compared to 23% for straight reaches and 14% for the inside of bends), but
that does not account for the pattern observed. Holding armoring constant, there is less instability
on the outside of bends than the other two bend classes. Looking just at unarmored banks, bank
instability was 37.8% on the outside of bends compared to 41.1% on the inside of bends, and
45.9% unstable on straight reaches. Looking just at armored banks, bank instability was 28.9%
on the outside of bends compared to 36.9% on the inside of bends and 29.6% on straight reaches.
Looking at those data from the other perspective, holding bank geometry constant, armoring has
its greatest benefit in terms of stabilizing banks on straight reaches and its least benefit on the
inside of bends.
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Figure 12. Proportion unstable for unarmored and armored banks on the insides and outsides of
bends or on straight reaches.
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